Automatic detection and size quantification of infarcts by myocardial perfusion SPECT: clinical validation by delayed-enhancement MRI.

نویسندگان

  • Piotr J Slomka
  • David Fieno
  • Louise Thomson
  • John D Friedman
  • Sean W Hayes
  • Guido Germano
  • Daniel S Berman
چکیده

UNLABELLED We aimed to validate the accuracy of a new automated myocardial perfusion SPECT quantification based on normal limits for detection and sizing of infarcts, using delayed-enhancement MRI (DE-MRI) as a gold standard. METHODS Eighty-two immediate (201)Tl rest scans and 26 (201)Tl delayed redistribution scans were compared with resting DE-MRI scans acquired within 24 h of SPECT acquisition. The immediate (201)Tl scans were considered for validation of infarct detection and the delayed (201)Tl scans were considered for infarct sizing. A simplified quantification scheme was used in which defect extent (EXT) and total perfusion deficit (TPD) parameters were derived automatically from SPECT images by comparison with sex-matched normal limits and applying a 3.0 average deviation criterion. The total extent of hyperenhancement expressed as the percentage of the left ventricle was derived from DE-MRI images by visual definition of myocardial contours and defects. DE-MRI and SPECT images were fused in 3 dimensions for visual comparison. Phantom data were also quantified using the same EXT and TPD measures for defects ranging from 5% to 70% of the myocardium. RESULTS The area under the receiver-operator-characteristic curve for the detection of infarct on immediate rest scans was 0.91 +/- 0.03 for EXT and 0.90 +/- 0.03 for TPD (P = not significant). The sensitivity and specificity for the detection of infarct by EXT on immediate (201)Tl rest scan were 87% and 91%, respectively, with the optimal defect size threshold of 4%. Six of 7 cases with DE-MRI defects < 5% were detected by SPECT. Infarct sizes obtained from DE-MRI correlated well with EXT (slope = 0.94, offset = 3.8%; r = 0.84) and TPD (slope = 0.75, offset = 4.2%; r = 0.85) obtained from delayed SPECT (201)Tl scans. Excellent correlation was observed between the SPECT quantification and the physical defect size for the phantom data. The actual size of the defect was better estimated by EXT (slope = 1.00, offset 1.33%; r = 0.99) than by TPD (slope = 0.79, offset = 1.9%; r = 0.99). CONCLUSION Automated quantification of the EXT on myocardial perfusion SPECT images can reliably detect infarcts and measure infarct sizes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myocardial perfusion SPECT: Perfusion quantification

Different software tools for quantification of myocardial perfusion SPECT (MPS) studies are routinely used. Several perfusion parameters can be computed automatically.  Interpretation of the MPS should start with visual inspection of the rotating planar images, visual analysis of reconstructed SPECT slices and then quantitative analysis to confirm the visual impression. Quantification should be...

متن کامل

Semi-quantitative segmental perfusion scoring in myocardial perfusion SPECT: visual vs. automated analysis

Introduction: It is recommended that the physician apply at least a semi-quantitative segmental scoring system in myocardial perfusion SPECT.  We aimed to assess the agreement between automated semi-quantitative analysis using QPS (quantitative Perfusion SPECT) software and visual approach for calculation of summed stress  score (SSS), summed rest score (SRS) and summed difference score (SDS). ...

متن کامل

Co-registration of cardiac MRI and rest gated SPECT in the assessment of myocardial perfusion, function and viability.

PURPOSE Myocardial perfusion is routinely measured by SPECT--this technique has a rather low spatial resolution but covers the whole myocardium and is equipped with efficient image analysis software. Cardiac MRI has higher spatial resolution than SPECT and excellent sequences for myocardial function and viability detection but the lack of easy-to-use methods of acquisition and post-processing o...

متن کامل

Quantitative polar representation of left ventricular myocardial perfusion, function and viability using SPECT and cardiac magnetic resonance: initial results.

BACKGROUND The clinical management of patients with coronary artery disease (CAD) often involves a complex assessment of the extent and severity of changes in left ventricular (LV) myocardial perfusion, function and viability. We aimed to explore the feasibility of integrative quantitative representation of LV perfusion, function and viability in adjacent polar plots. In order to assess the cli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 46 5  شماره 

صفحات  -

تاریخ انتشار 2005